Zeta Integrals and Integral Geometry in the Space of Rectangular Matrices

نویسنده

  • BORIS RUBIN
چکیده

f(x) det(xx)dx and the Radon transform on the space Mn,m of n × m real matrices x = (xi,j). We present a self-contained proof of the Fourier transform formula for this distribution. Our method differs from that of J. Faraut and A. Korányi [FK] in the part related to justification of the corresponding Bernstein identity. We suggest a new proof of this identity based on explicit representation of the radial part of the Cayley-Laplace operator ∆ = det(∂∂), ∂ = (∂i,j)n×m. We also study convolutions with normalized zeta distributions, and the corresponding Riesz potentials. The results are applied to investigation of Radon transforms on Mn,m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods

In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...

متن کامل

An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system

In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...

متن کامل

Numerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev ‎approximation

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...

متن کامل

Greedy decomposition integrals

In this contribution we define a new class of non-linear integrals based on decomposition integrals. These integrals are motivated by greediness of many real-life situations. Another view on this new class of integrals is that it is a generalization of both the Shilkret and PAN integrals. Moreover, it can be seen as an iterated Shilkret integral. Also, an example in time-series analysis is prov...

متن کامل

Integral type contraction and coupled fixed point theorems in ordered G-metric spaces

In this paper, we apply the idea of integral type contraction and prove some coupled fixed point theorems for such contractions in ordered $G$-metric space. Also, we support the main results by an illustrative example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004